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J. Phys. A: Math. Gen. 23 (1990) 2307-2313. Printed in the U K  

nth-order derivatives of certain inverses and the Bell 
polynomials 

Manmohan Singh 
3072/2B/2, St no 22, Ranjit Nagar, New Delhi-110008, India 

Received 6 November 1989 

Abstract. By employing certain concepts in combinatorial analysis, we derive here the 
closed-form expressions for the nth-order derivatives of the following: 

( i )  inverse powers of a matrix d 
(ii) reciprocal powers of a function f (explicit or implicit) 
(iii) reciprocal powers of a determinant A 

and establish their relation with the Bell polynomials. 

1. Introduction 

It is generally believed that Leibnitz's theorem for the product of two functions (say, 
f a  g )  holds true for the quotient as well (say, fig), as regards the closed form for its 
nth-order derivative. However, this is not true and we shall show in this paper in 
detail that the nth-order derivative of inverse? powers of the following: 

(i) a matrix d 
(ii) a function f (explicit or implicit) 
(iii) a determinant A 

do enjoy closed-form expressions of their own. 
To accomplish this task, we require the following basic concepts which arise in a 

study of the various 'arrangements' possible for an integral number n (Riordan 1958). 
(i)  Partition. By definition, this is a collection of integers (with a given sum) 

without regard to order. 
(ii) Composition. The 'ordered' collection of integers (with a given sum) is called 

composition. 
In our earlier paper (Singh 1987), we have used the results derived in section 3 of 

the present paper to arrive at a closed-form expression for the infinite sum occurring 
in the evaluation of the single-clipped correlation. 

2. nth-order derivative of a matrix inverse D " d - '  

The starting point is the identity 

dd-' = [ I ]  (1) 
where the elements of d and d-' are functions of a single parameter, say x. 

t Used in the general sense that we have, %'e-' =identity, where % stands for SP, f or A and r b  1. 
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Applying Leibnitz's theorem to this product, we get 

n 

D " ( d d - ' )  = "C',DJdD"-Jd-' = D"[Z] = [O] 
J = o  

where D" = d"/dx". 
From (2) it follows that+ 

-D"(&-') = n~ld-1~Ld~n-'d-l+n~2d-1~2d~n-2r;4-1 +. . . 
+ nCkd- 'DkdD"-kd- '  + . . . + "C,d- lD"dd- ' .  ( 3 )  

Introducing the notation Pk = &-IDk&, we can arrive at the following expressions for 
particular values of n (say, n = 1,2,3,4):  

n = l  

n = 2  

n = 3  

D3d- '  = [ - 6 9 : + 3 ( 9 , 9 , +  9291)-93]d-1 

n = 4  

=4!{  ( - ~ ) ~ ( : ) ~ + ( - i ) ~ [  ($)'($) 

From the equations above, it can be seen clearly that the general result is 

(4) 

where Pi = d - ' D ' d  and the summation is taken over all the integers ( i ,  , i2 ,  . . . , ik > 0) 
distinct or otherwise, such that Xi = i, = n. 

t Bodewig (1958, p 36) .  expands D"(&') with the fundamental mistake of assuming that all D " d  = 0 for 
nr 1 .  
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Proceeding exactly in the same manner, we can easily generalise the result of ( 5 )  to 

where now, gi = d - ' D ' d '  ( r  3 1 )  and the summation is done as in ( 5 ) .  
The number of permutations of the various i ,  in (6) above depends on how many 

times a 'distinct' i ,  ( i l  # i 2  # . . . # i k )  occurs in the sum Zk,, i ,  = n. Let I ,  determine 
the frequency with which a distinct i ,  occurs, then the number of permutations for 
each partition of n with a fixed k is given by 

I l , = k  1 I,i,  = n. 
( 7 )  

m m 

For example, when n = 7 and k = 3, we have the following four partitions: 

I I1 I11 IV 
3 , 3 9 1  3,232 452, 1 5 ,  1 9 1  

Thus we find that whereas there are only two distinct numbers i ,  with m = 1,2  
constituting partitions I ,  I1 and IV, partition 111 consists of three distinct numbers i ,  
with m = 1,2 ,3 .  The numbers of permutations in these four partitions are 

Further, on summing over all the permutations above, we should get the total number 
of compositions of the number n = 7 with k = 3, 

--=( - 6'  7 - 1  ). 
4!2!  3 - 1  

In general (see Riordan 1968): 

k !  
4 k ;  11, I , , .  . . ,  I k )  = c (10) 

Xm/, , ,=k ,Xn>/ , , ,am=n 1,  ! 1 2 ! .  . l k !  
c 

X, , , /n ,=k ,X , , , /mim=n 

Finally, the total number of compositions of n for all the k is given by (Riordan 1968): 

i: (;I;) =2"- ' .  
k = l  

2.1. f i e  generating function (GF)  for D"d--' 

From (6), it is apparent that the required nature of the GF should be such that it 
generates all the compositions of n, or equivalently, should generate all the partitions 



2310 M Singh 

of n occurring in various pelmutations for each k where 1 C k d n. We see that the 
'ordinary' Bell polynomials B n , k  (Comtet 1974, p 136) satisfy the above specifications: 

i n , k ( X I , X 2 , . * * r X k ) r n  (12) 

i n , k ( X I , X 2  , . . . r X k ) = c ( X , , ) ( X I * )  * * . ( X I , )  ( 1 3 )  

la1 n a k  

where x i  = 9,/i!. From (12),  the following relation becomes apparent: 

and the summation over all the integers ( i l  , i 2 ,  . . . , i k  > 0) distinct or otherwise, is done 
in the same manner as in ( 5 ) .  Therefore, the closed form for D"d- '  ( r  3 1 )  as obtained 
from ( 6 )  and ( 1 3 )  now takes the following compact form: 

D " d - ' = n !  ( - l ) k j  n .k )  d-' 
( k 1 1  

where 

2.2. Generation of Dn+ld-' from D"d-' ( r 2  1 )  

We first observe that given 9 k  = d$- 'Dkd ' ,  we have 

(15) 
Differentiation of (14) coupled with (15) implies that n ! [ 2 ; ; ' = 1  ( - l ) k ( D 6 n , k  - 
i n , k ' ? ? l ) ] d - '  should result in ( n  + I)![x:L~ ( - l ) k B n + l , k ] d - r  after complete evajuation. 
But unfortunately, there is no simple recurrence relation between DBn,k and B n + l , k  so 
that the above expressions could be shown to be the same in an independent manner 
as well. We shall, however, show this for a particular value of n (say, n = 3) explicitly. 
First, 

D 9 k  = - 9 1  9 k  + 9 k +  1 . 

3 

k = l  
3! ( - l ) k D i 3 , k  

= 3 ![ ( - 1 )3Dh3,3 + ( - 1 )'D6,,, + ( - 1 ) Dg3, 1 ]  

= [ ( - 1 )' 18 9; + ( - 1 )3( 12 9 ; 9 2  + 9 9 , 9 2  91 + 9 9 2  9;) 
+ ( - 1)2( 6 9 :  + 4 8 , 9 3  + 4P391) + ( - 1)'P4] 

and 

3! 

Addition of (16)  and (17 )  gives us 

31 (D&,k -&&Pi) 

( - 1 ) k + 1 i 3 , k 9 1  = [ ( - 1 ) 4 6 9 3 -  (-1)33(PlP2P1 + P29 ; )  + (-1)293P1]. 
k = l  

3 

k = l  

9 2  91 9 2  3 + 9 2  9 1  

2! I !  2! l !  2! ( l !  )'I = 4 !  - + ( - 1 1 3  -+- - { (3)' 
+ ( - 1 ) 2 [ ( $ )  +--+-- 9 1  9 3  9 3  9'1 +( - 1) 1 7 ; )  - 

l !  3 !  3 !  l!  
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which generates D n c l S r  from D"d- '  when n = 3 .  

3. nth-order derivative of the inverse of a function D"f-' 

In the equation for D " K ' ,  if the matrix .d is replaced by an ordinary function f; we 
see that all the permutations (see (7)) coalesce into just one number and the ordinary 
Bell polynomials will now be replaced by the exponential Bell polynomials Bn,k, 
which are defined as follows. Consider the expansion of ePDne-' where e' =J: If we 
note that D P  =f- 'Df= Dff-' = PI and that DPk = - P I P k  + Pkll where P k  =f-IDkf= 
Dkff-', we find that 

ePDne- '=Bn = 1 (-l)kk!Bn,k(P], Pz,. . . , P n - k + l ) .  (18) 
k = l  

The exponential Bell polynomials Bn.k also have the following multinomial form 
(Comtet 1974, p 134): 

But as e'D"e-' =fD"f-', we get from (18) that 

where the parentheses in Bn,k above are dopped for convenience. 

3.1. D"+y-'  by induction 

On differentiating (18), we find the following recurrence relations: 

Bn+l = DB, - PIBn (21) 

Bnt1.k = DBn,k+ PIBn,k-l (22) 

where P, = B1,l ; Bn,k = 0 if k = 0 and Bn," = (Bl, l)".  Now, from (18) and (22), Dn+lf-l 
follows immediately: 

n 

Dn+lf - l=  1 (-l)kk!(DBn,k -PlBn,k)f-' 
k = l  

as can be easily seen on expansion. 

for D"f-', it is true for Dn+'f-l as well. 
Thus in the case of a function, it is possible to show directly that if a form is true 
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3.2. D"(f- ' )  when r > l  

It becomes immediately apparent from the expression for D"(&') that now for 
D"( f - r ) ,  the multiplying factor in the summand on the right-hand side will be k+r-lCk. 
Thus, we get the following expression for D"(f-'): 

( k +  r - l ) !  
D"( f - ' )=(  k = l  ( - l ) k  ( r - l ) !  B n , k ) f  -' 

where for r = 1 we regain (20). 
Such formulae as given above have been discussed by Comtet (1974, theorem B, 

p 141) where the final expression for D"( f - r )  is given in terms of the Laurent series 
rather than the compact form given in (24). 

4. nth-order derivative of the inverse of a composite function 

The case of the nth-order derivative of a composite function is known-the famous 
Faa' di Bruno's formula (see Riordan 1958, pp 34-8). However, our task here is to 
show what the nth-order derivative of the 'inverse' case would look like. 

Let f ( u )  be the composite function such that 

U = g(x)  J ;  =.f-l(u)D:f(u) g, = g-'(x)D:g(x). (25) 

Then, following Gibson (1958), the expression for the nth-order derivative of the 
inverse of a composite function can be expressed as 

where 
k - 1  

An,k(X)= (-1)IkCiU1D:Uk-l 
I =o 

Now, if we utilise the form for Di[f- '(u)] as given by (20), we get the closed-form 
expression for D:[ f -'(U)]. The other way is to identify An,k/ k! with the exponential 
Bell polynomials as done in Riordan (1958, pp 35-8) and we find that 

Thus from (20), (25), (26) and (28), it follows that 

where the superscripts x and U in and Bk,', respectively, specify the differentiations. 
The required GF for (29) is 

as the coefficients of ( tn/n!)( tk/k!)  in the above sum are the summands on the 
right-hand side of (29). 
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5. nth-order derivative of the inverse of a determinant D"A-' 

The results of section 3 are also valid for the nth-order derivative of the inverse of a 
determinant A if we replacef by A in (20) and (24). But on realising the cumbersome 
nature of determinant algebra, it is preferable to use the following identity due to 
Bodewig (1958, p 41): 

DA = A Tr(d - 'Dd) .  (30) 

Applying Leibnitz's theorem twice to the right-hand side of (30) and using (14), 
we get 

( 4 1  
k - I  k-1-1  ( k - l ) !  
,=o p = ~  j ! p ! ( k - l - J - p ) !  

D ~ A =  C , D'A Tr[DP(d-')Dk-J-p 

( k - I ) !  D'A Tr[ ( (-l)q&,,q)Pk-l-p]. 
k - l  k -1-1  

q=1  
= c  c 

,=o p = o  j ! ( k - 1 - j - p ) !  

In (31), we notice that whenever p = O ,  we just have d-' instead of the complete 
expansion for D P ( d - ' ) .  

Now, to obtain the final expression for D"(A-'), we simply put A = f i n  (24) where 
P, = A-'DIA = D'AA-' and DkA is given by (31). 

7. Conclusion 

Thus we see that the closed-form expressions derived above are valid for any arbitrary 
power of the following: 

(i)  inverse of a matrix 
(ii) inverse of an ordinary function 
(iii) inverse of a composite function 
(iv) inverse of a determinant 

and are expressible in terms of the Bell polynomials (ordinary or exponential). 
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